Heinrich Hertz

In 1886, Hertz developed the Hertz antenna receiver. This is a set of terminals that is not electrically grounded for its operation. He also developed a transmitting type of dipole antenna, which was a center-fed driven element for transmitting UHF radio waves. These antennas are the simplest practical antennas from a theoretical point of view. In 1887, Hertz experimented with radio waves in his laboratory. These actions followed Michelson’s 1881 experiment (precursor to the 1887 Michelson-Morley experiment) which did not detect the existence of aether drift, Hertz altered the Maxwell’s equations to take this view into account for electromagnetism. Hertz used a Ruhmkorff coil-driven spark gap and one meter wire pair as a radiator. Capacity spheres were present at the ends for circuit resonance adjustments. His receiver, a precursor to the dipole antenna, was a simple half-wave dipole antenna for shortwaves. Hertz published his work in a book titled: Electric waves: being researches on the propagation of electric action with finite velocity through space. Theoretical results from the 1887 experiment. Through experimentation, he proved that transverse free space electromagnetic waves can travel over some distance. This had been predicted by James Clerk Maxwell and Michael Faraday. With his apparatus configuration, the electric and magnetic fields would radiate away from the wires as transverse waves. Hertz had positioned the oscillator about 12 meters from a zinc reflecting plate to produce standing waves. Each wave was about 4 meters. Using the ring detector, he recorded how the magnitude and wave’s component direction vary. Hertz measured Maxwell’s waves and demonstrated that the velocity of radio waves was equal to the velocity of light. The electric field intensity and polarity was also measured by Hertz. (Hertz, 1887, 1888). The Hertzian cone was first described by Hertz as a type of wave-front propagation through various media. His experiments expanded the field of electromagnetic transmission and his apparatus was developed further by others in the radio. Hertz also found that radio waves could be transmitted through different types of materials, and were reflected by others, leading in the distant future to radar. Hertz helped establish the photoelectric effect (which was later explained by Albert Einstein) when he noticed that a charged object loses its charge more readily when illuminated by ultraviolet light. In 1887, he made observations of the photoelectric effect and of the production and reception of electromagnetic (EM) waves, published in the journal Annalen der Physik. His receiver consisted of a coil with a spark gap, whereupon a spark would be seen upon detection of EM waves. He placed the apparatus in a darkened box to see the spark better. He observed that the maximum spark length was reduced when in the box. A glass panel placed between the source of EM waves and the receiver absorbed ultraviolet radiation that assisted the electrons in jumping across the gap. 1887 experimental setup of Hertz’s apparatus. When removed, the spark length would increase. He observed no decrease in spark length when he substituted quartz for glass, as quartz does not absorb UV radiation. Hertz concluded his months of investigation and reported the results obtained. He did not further pursue investigation of this effect, nor did he make any attempt at explaining how the observed phenomenon was brought about. Hertz did not realize the practical importance of his experiments. He stated that,

“It’s of no use whatsoever[…] this is just an experiment that proves Maestro Maxwell was right – we just have these mysterious electromagnetic waves that we cannot see with the naked eye. But they are there.”

Asked about the ramifications of his discoveries, Hertz replied,

“Nothing, I guess.”

His discoveries would later be more fully understood by others and be part of the new “wireless age”. In bulk, Hertz’ experiments explain reflection, refraction, polarization, interference, and velocity of electric waves. In 1892, Hertz began experimenting and demonstrated that cathode rays could penetrate very thin metal foil (such as aluminium). Philipp Lenard, a student of Heinrich Hertz, further researched this “ray effect”. He developed a version of the cathode tube and studied the penetration by X-rays of various materials. Philipp Lenard, though, did not realize that he was producing X-rays. Hermann von Helmholtz formulated mathematical equations for X-rays. He postulated a dispersion theory before Röntgen made his discovery and announcement. It was formed on the basis of the electromagnetic theory of light (Wiedmann’s Annalen, Vol. XLVIII). However, he did not work with actual X-rays.

Be Sociable, Share!

About andy